Your Guide to Understanding Genetic Conditions

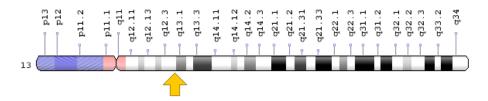
B3GLCT gene

beta 3-glucosyltransferase

Normal Function

The *B3GLCT* gene (formerly known as *B3GALTL*) provides instructions for making an enzyme called beta 3-glucosyltransferase (B3Glc-T), which is involved in the complex process of adding sugar molecules to proteins (glycosylation). Glycosylation modifies proteins so they can perform a wider variety of functions. The B3Glc-T enzyme is involved in a two-step glycosylation pathway that results in the formation of a sugar structure, made up of the sugars fucose and glucose, on a specific location of several different proteins. The B3Glc-T enzyme is responsible for the second step, which adds a glucose molecule to the fucose molecule already attached to the protein. The *B3GLCT* gene is normally turned on (active) in most cells of the body, which suggests that the B3Glc-T enzyme plays an important role across many cell types.

Health Conditions Related to Genetic Changes


Peters plus syndrome

At least 10 mutations that cause Peters plus syndrome have been identified in the *B3GLCT* gene. Peters plus syndrome is characterized by eye abnormalities, short stature, intellectual disability, and distinctive facial features. The most common *B3GLCT* gene mutation replaces the DNA building block (nucleotide) guanine with the nucleotide adenine near an area of the gene called exon 8 (written as 660+1G>A). This mutation disrupts how genetic information is pieced together to produce the B3Glc-T enzyme. The resulting enzyme is abnormally short and nonfunctional. It is unclear how the loss of functional B3Glc-T enzyme leads to the signs and symptoms of Peters plus syndrome, but impaired glycosylation likely disrupts the function of many proteins, which may contribute to the variety of features.

Chromosomal Location

Cytogenetic Location: 13q12.3, which is the long (q) arm of chromosome 13 at position 12.3

Molecular Location: base pairs 31,199,975 to 31,332,276 on chromosome 13 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- B3GALTL
- B3Glc-T
- B3GLT HUMAN
- B3GTL
- beta 1,3-galactosyltransferase-like
- beta-3-glycosyltransferase-like
- beta3Glc-T

Additional Information & Resources

Educational Resources

- Essentials of Glycobiology (second edition, 2009): Glycosyltransferases and Glycan-processing Enzymes https://www.ncbi.nlm.nih.gov/books/NBK1921/
- Molecular Biology of the Cell (fourth edition, 2002): What is the Purpose of Glycosylation? https://www.ncbi.nlm.nih.gov/books/NBK26941/#A2354

GeneReviews

 Peters Plus Syndrome https://www.ncbi.nlm.nih.gov/books/NBK1464

Scientific Articles on PubMed

PubMed

https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28B3GALTL%5BTIAB%5D%29+OR+%28beta1,3-galactosyltransferase%5BTIAB%5D%29+OR+%28B3GLCT%5BTIAB%5D%29+OR+%28beta+3-galactosyltransferase%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

OMIM

 BETA-3-GLUCOSYLTRANSFERASE http://omim.org/entry/610308

Research Resources

- ClinVar https://www.ncbi.nlm.nih.gov/clinvar?term=B3GLCT%5Bgene%5D
- HGNC Gene Family: Beta 3-glycosyltransferases http://www.genenames.org/cgi-bin/genefamilies/set/426
- HGNC Gene Symbol Report http://www.genenames.org/cgi-bin/gene_symbol_report?q=data/ hgnc_data.php&hgnc_id=20207
- NCBI Gene https://www.ncbi.nlm.nih.gov/gene/145173
- UniProt http://www.uniprot.org/uniprot/Q6Y288

Sources for This Summary

- GeneReview: Peters Plus Syndrome https://www.ncbi.nlm.nih.gov/books/NBK1464
- Hess D, Keusch JJ, Oberstein SA, Hennekam RC, Hofsteenge J. Peters Plus syndrome is a new congenital disorder of glycosylation and involves defective Omicron-glycosylation of thrombospondin type 1 repeats. J Biol Chem. 2008 Mar 21;283(12):7354-60. doi: 10.1074/ jbc.M710251200. Epub 2008 Jan 16.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18199743
- Kozma K, Keusch JJ, Hegemann B, Luther KB, Klein D, Hess D, Haltiwanger RS, Hofsteenge J. Identification and characterization of abeta1,3-glucosyltransferase that synthesizes the Glc-beta1,3-Fuc disaccharide on thrombospondin type 1 repeats. J Biol Chem. 2006 Dec 1;281(48):36742-51. Epub 2006 Oct 10.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17032646

- Lesnik Oberstein SA, Kriek M, White SJ, Kalf ME, Szuhai K, den Dunnen JT, Breuning MH, Hennekam RC. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet. 2006 Sep;79(3):562-6. Epub 2006 Jul 19. Erratum in: Am J Hum Genet. 2006 Nov;79(5):985.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16909395
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559553/
- Reis LM, Tyler RC, Abdul-Rahman O, Trapane P, Wallerstein R, Broome D, Hoffman J, Khan A, Paradiso C, Ron N, Bergner A, Semina EV. Mutation analysis of B3GALTL in Peters Plus syndrome. Am J Med Genet A. 2008 Oct 15;146A(20):2603-10. doi: 10.1002/ajmg.a.32498. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18798333
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755183/
- Sato T, Sato M, Kiyohara K, Sogabe M, Shikanai T, Kikuchi N, Togayachi A, Ishida H, Ito H, Kameyama A, Gotoh M, Narimatsu H. Molecular cloning and characterization of a novel human beta1,3-glucosyltransferase, which is localized at the endoplasmic reticulum and glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domain. Glycobiology. 2006 Dec;16(12): 1194-206. Epub 2006 Aug 9.

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16899492

Reprinted from Genetics Home Reference: https://ghr.nlm.nih.gov/gene/B3GLCT

Reviewed: September 2013 Published: March 21, 2017

Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services